

Math 3 - Discrete math (V3020) Exercises, week 10 (due Nov 11th, 2025)

1. Let $G = (V, T, S, P)$ be the phrase-structure grammar with the vocabulary $V = \{0, 1, A, S\}$, the terminals $T = \{0, 1\}$, and the set of productions P consisting of $S \rightarrow 1S$, $S \rightarrow 00A$, $A \rightarrow 0A$, and $A \rightarrow 0$. S is the start symbol.
 - (a) Show that 111000 belongs to the language generated by G .
 - (b) Show that 11001 does not belong to the language generated by G .
 - (c) What is the language generated by G ?
2. Construct phrase-structure grammars to generate the following sets.
 - (a) $\{1^n \mid n \geq 0\}$
 - (b) $\{10^n \mid n \geq 0\}$
 - (c) $\{(11)^n \mid n \geq 0\}$
3. Draw the state diagram for the finite-state machine with the following state table.

State	f		g	
	Input		Output	
	0	1	0	1
s_0	s_1	s_0	0	0
s_1	s_2	s_0	1	1
s_2	s_0	s_3	0	1
s_3	s_1	s_2	1	0

What is the output generated by the input string 01110? s_0 is the initial state.

4. Determine whether each of these strings is recognized by the deterministic finite-state automaton in Fig. 1 (on the next page).
 - (a) 1101
 - (b) 0101010
5. Construct a deterministic finite-state automaton that recognizes the set of all bit strings that end with 10.

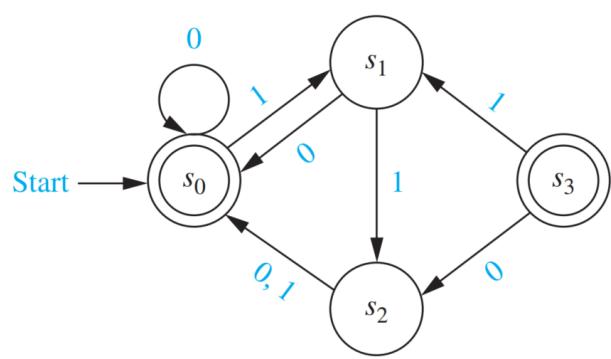


Figure 1: The state diagram for problem 4.